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Abstract--A theoretical and experimental study is made of the factors influencing the burning rate 
between two vertical parallel fuel surfaces facing one another. No radiation, infinite gas phase reaction 
rates and unit Lewis number are assumed. 

The equations are solved numerically and the burning rate is found to be controlled by the product 
of Grashof number and channel aspect ratio (i.e. the half channel width divided by its length). For a 
wide channel separation, the burning rate is independent of the channel separation distance and the 
results reduce to our previous solution for single surface burning. For very long narrow channels the 
burning rate becomes independent of the channel length and asymptotically approaches an analytical 
solution for infinitely long channels. 

Finally, the theoretical results are compared to the experimental data with favorable agreement. 

N O M E N C L A T U R E  r ,  

B, mass transfer driving force, see equation (18); 
b, half channel separation distance [L]; T, 
Cp, specific heat [E/M0]; U, 
D, gas diffusivity [L2/t]; 
F, normalized energy-specie function, see u, 

equation (25); um 
G, density function, see equation (32); v, 
Gr, Grashof number (gb3/v2)(L/CvToo); X, 
9, gravitational force [L/t2]; 
H, dimensionless channel height, see equation x, 

(45); Y, 
h, specific enthalpy relative to ambient tem- Y, 

perature [E/M]; 
k, thermal conductivity [E/Lt0]; Y, 
L, effective heat of vaporization [E/M]; Z, 
Le, Lewis number, k/pCpD; 
l, channel height [L]; , Zb, 
M, molecular weight [M/mole]; 
th", mass flux at surface [M/L2t]; 
rh'", volumetric mass generation rate [M/Lat]; 
Pr, Prandtl number, Cpl~/k; 
p, pressure [M/Lt 2]; 
P0, ambient static pressure [M/Lt2]; 
Q, heat of combustion (lower) for v~ moles of 

fuel [E]; 
~'", volumetric heat generation [E/L3t]; 
R, universal gas constant [E/mole 0]; 

stoichiometric mass ratio of fuel to oxidant, 
see equation (30); 
absolute temperature [0]; 
dimensionless longitudinal velocity, 
see equation (44); 
longitudinal velocity [L/t]; 
local maximum longitudinal velocity [L/t] ; 
transverse velocity [L/t]; 
dimensionless longitudinal coordinate, see 
equation (21); 
longitudinal coordinate ILl;  
mass fraction; 
normalized transverse coordinate y/b in 
Appendix; 
transverse coordinate [L]; 
normalized dimensionless transverse 
coordinate, see equation (22); 
dimensionless half channel separation distance, 
see equation (22). 

Greek symbols 

~, generalized molecular diffusivity [L2/t] in 
Appendix; 

ill, f12, energy-specie functions, see equations (8) and 
(9); 

y, dimensionless ambient temperature, Cp To~/L; 
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f ' ,  generalized transferred property in Appendix: 
t l, dynamic viscosity [M/Lt]:  
v, kinematic viscosity [L...'te]: 
v', v", stoichiometric coefficients for reactants and 

products; 
~, dimensionless excess pressure, see equation 

(24): 
p, density [M/L 3] ; 
:, dimensionless surface temperature, 

f 
L.v 

C,,dr; 
I ,  

~, dimensionless stream function, see equation 
(23}. 

Subscripts 

F, fuel: 
L flame; 
in, entrance; 
O, oxidant; .~. surface; 
yap, vaporization; 
w, fuel surface; 
~ ,  ambient. 

I. I N T R O D U C T I O N  

THis is a theoretical and experimental study of the 
factors influencing the laminar burning rates of two 
vertical parallel fuel surfaces facing one another. The 
study is motivated by the possibility of developing a 
standard materials flammability test wherein a subject 
material burns entirely within its own radiative and 
combustion environment. The study itself is designed 
to gain a deeper scientific insight into the physical 
factors controlling the burning rate. In addition, the 
channel burning problem in itself is of considerable 
practical importance. 

It has frequently been observed that the free con- 
vective burning between two solid-fuel surfaces is con- 
siderably more intense than the burning of a single 
surface in the open. For example a single thick plank 
of wood does not burn in the open; however, two 
parallel planks, when placed a few centimeters apart, 
burn vigorously. This phenomenon has usually been 
attributed to three possible causes: (1) the containment 
of radiation being emitted by flames or hot solid 
surfaces inside the channel; (2) the so-called fluid 
dynamic "chimney effect" involving the confinement 
of hot combustion products: and (3) the prevention of 
possible gas-phase chemical kinetic extinction phenom- 
ena by increasing the gas flow times. While all three 
explanations have been proposed in the past, it is clear 
from the present study that only the first and third 
explanations are relevant since the fluid dynamic con- 
finement actually causes a decrease in steady burning 
rate by restricting the access of oxidant to the fire. 

This analysis ignores radiative effects. Since the fuel 
surfaces face one another, csscntially all the radiant 
output from each surface is received by the opposite 
surface, thereby minimizing this effect. The flame 
radiation may be important, especially for those fuels 
with high flame temperature. Since the radiant output 
reduces both the flame temperature and the convective 
heat transfer, it is anticipated that its effect is partly 
self-cancelling for the confined flames considered here. 
In view of the present ignorance of flame radiation 
laws, this hypothesis should be checked experimentally. 

The present problem is solved using Schvab- 
Zeldovich [1] variables ignoring gas-phase kinetics. 
Such a treatment of diffusive burning phenomena is 
conventional and burning problems of different 
geometries have been solved in this manner by 
Spalding [2], Emmons [3], de Ris [4], Kosdon, 
Williams and Buman [5], and Kim, de Ris and 
Kroesser [-6]. The related free convective heat transfer 
problems for the parallel geometry used in this study 
were also considered by Elenbaas [7], Boida and 
Osterle [8], Wors0e-Schmidt and Leppert [9], 
Lawrence and Chato [10]. Davis and Perona [11], 
Quintiere and Mueller [12] and many others. 

2. GOVERNING EQUATIONS 

The schematic diagram of the vertical parallel fuel- 
beds which are transferring fuel by convection and 
diffusion into the gas-phase is shown in Fig. 1. The 
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FIG. 1. Schematic diagram of the problem. 
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oxidant is introduced at the bottom entrance by the 
natural convection induced by the hot reaction gases. 
If the channel is sufficiently narrow and high, the 
oxidant is entirely consumed in the region below the 
flame inside the channel, thereby preventing its exist- 
ence above the flame. In this case, the channel is clearly 
divided into two zones, an oxidant-rich zone below 
and a fuel-rich zone above the flame. The present 
theory solves the steady state laminar burning of the 
above geometry. 

Here x and y are, respectively, the longitudinal and 
transverse coordinates, while u and v are the cor- 
responding velocity components. The gravitational 
force is acting vertically downward and the channel 
has a length, l, and a half separation distance, b. The 
equations for a steady state laminar diffusion flame 
within a free convective boundary layer are as follows: 

Conservation of Mass: 

O 
~x (pu) + ~y (pv) = 0 (1) 

Conservation of Momentum: 

~u ~u 10p 1 0 • du'~ 
U~x+V d y -  pox 9+p~y~  Oy/ (2) 

Conservation of Energy: 

1 L (k . . . .  U~x+V~y=pOy k, Cp~y)+q (3) 

where 

h =- CpdT 

is the specific enthalpy. 

Conservation of Specie, "i",: 

U ~x + V c~y P ~y D +the" 

State: 

(4) 

pT = p~oTo~. (5) 

Here •'" and rhi" are, respectively, the volumetric 
heat and mass "i" generation rates. These equations 
presume ideal gases, no thermally driven specie dif- 
fusion, and no radiation. The transport properties,/~, 
k/Cp, and pD are assumed to be independent of com- 
position with unit Lewis number Le = pCpD/k. Also, 
the longitudinal diffusive transfer of heat, momentum 
and species is ignored. This latter approximation is 
examined in the Appendix. Equation (5) is obtained by 
assuming velocities much less than the speed of sound 
and all species having equal molecular weights. The 
specific heat, Cp is assumed to be identical for all 
species but can depend on temperature. 
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The source terms 0'" and n~" are related by the 
overall stoichiometric equation (which assumes infinite 
gas-phase reaction rates): 

v~ Fuel + vb Oxidant ~ v~; Product + Q Heat (6) 

where Q is the heat released by the combustion of 
Mov'o or Mvv'v mass of oxidant or fuel respectively. 
Thus, within the flame zone, 

,~ '  rh~' q"' 
(7) 

Mrv~- Mov'o Q 

Similar relations can be established between heat and 
any particular specie or between species; however, the 
fuel, oxidant and heat are of primary interest in the 
present problem. 

By defining two Schvab-Zeldovich [1] variables 
which are conserved throughout in the gas phase. 

fit = [h + (Yo- Yoo~)Q/Mov'o]/L (8) 

r2 = [h+ YFQ/MFv'F]/L. (9) 

Equations (3) and (4) are reduced with equation (7) to 
the homogeneous equations: 

U~xx+V c~-pc~y \C v OyJ = O, i= 1,2. (10) 

Here, equation (10) is obtained by assuming the heat 
transfer occurs in the same manner as specie transfer, 
i.e. the Lewis number, pCpD/k = 1. The "effective heat 
of vaporization", L, is the ratio of total heat transfer 
to the surface to the total outgoing mass from the 
surface which for steady burning of a fuel supplied 
from a reservoir at T~ is 

(1" ~ rvap 
L = .,~ = L r,~ + CpflT 

m F ,,} T ~ 

where Tvap and Cp, are, respectively, the temperature 
at which the fuel vaporizes and the condensed fuel 
specific heat. The effective heat of vaporization is pre- 
sumed to be constant throughout this problem which 
enables Trap also to be a constant. For completely 
steady burning with fuel being supplied from a constant 
temperature reservoir at %0 the energy conducted into 
the fuel interior is exactly equal to the energy transfer 
required to heat the fuel to its vaporization tem- 
perature prior to vaporization. Under such steady 
conditions and in the absence of radiation we pre- 
viously showed [6] quite generally that Trap is constant 
for unit Lewis number, rapid gas phase kinetics and 
quasi-equilibrium vaporization such as occurs for a 
liquid or subliming solid fuel. If there is no heat loss 
to the fuel bed interior and the gas and condensed 
phases are in equilibrium at the surface, then the above 
defined L is identical to the conventional heat of 
vaporization or sublimation of the fuel, Lr,,p evaluated 
at the surface temperature. 

H M T  VoL 17. No. 3 - -D  
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3. BOUNDARY CONDITIONS 

At the entrance, it is clear by the definitions of 
[h and []2, 

at x=O,/h =/]2 = 0. I l l )  

The velocity at the entrance can be obtained by in- 
tegrating the Bernoulli equation for a horizontal stream 
line considering the entrance as a mass sink. Thus, 

at x = 0, P-Po = (p ~uz~)/'2 (12) 

where Po is the ambient static pressure at level x = 0 
and u,° is the inlet velocity at the entrance which is 
uniform across the channel at this level. This ui, will 
be used as an "eigenvalue" for the problem since it is 
also determined by the combustion taking place in the 
channel. 

At the exit, the pressure equals the ambient pressure 
at the exit height, since flow separation occurs at the 
exit; thus, 

at x = 1, p = po-p~,gl. (131 

At the center line of the channel, the geometrical 
symmetry gives 

at y =  0 

. . . . .  0 (14) 

~fl~ = 0, i = 1,2. (15) 
?y 

At the fuel surface, the longitudinal velocity is zero 
assuming no slipping flow and the mass flux at the 
surface is proportional to the heat flux to the surface; 
thus, 

at y =  b 

u = 0 (16) 

1 k~h  
ni'~-= p v =  ~ .C--c'y" (17) 

We now consider the boundary conditions for the 
energy-specie equations at the surface. In this problem, 
the fuel surface is regarded to be at its vaporization 
temperature, T,,p, which for steady burning lies a few 
degrees below the boiling temperature. For methanol 
as fuel, this temperature was calculated to be 328°K 
[13] (normal boiling point 337.7°K) using the Antoin 
equation [14] coupled with this theory. Noting that 
for infinitely fast reactions no oxidant exists at the 
surface, one obtains from the definition of/3l, 

F )/'L at v = b , / : q =  - - h v ,  p -= - B  (18) 
• \Mov~ 

where 

i P'vap hvap ~ CpdT. 

Nov,', the value offi2 at the surface is not immediately 
obvious since Yv is unknown there. However, the fuel 
transferred into the gas phase is carried out by both 
convection and diffusion: thus at the surface, 

?Yr y=b,  th'~-=pvYr-/)D ; , 119) ( :y 

and, using unit Lewis number and equation (17). one 
obtains the relationship of the gradients of the two 
defined energy-specie functions: 

at y = b. 
,, h~.~ ~/3~ 

,')/32_?y 1 Mrv'vLO t_/32(x, o1__~_) c.~y " (20) 

4. TRANSFORMATION OF EQUATIONS TO THEIR 
DIMENSIONLESS FORMS 

The equations and boundary conditions will now 
be transformed into their dimensionlegs forms. The 
independent dimensionless variables are defined as 

x - 7  Z-I 7/ b4 121) 

1 fr/bP d(2')whereZb(X)= 11 p d()'~ 
Z - = ~ 0 o  P~: J o p ~  \ b}  (22) 

so that Z = 0 is at the centerline and Z = 1 is at the 
surface. The transverse coordinate Z is a Howarth 
[ 15] transformed normalized distance which eliminates 
the variable density, p, in the governing equations 
with the aid of a dimensionless stream function which 
automatically satisfies the conservation of mass 
equation (1), namely: 

-=~ | ~ - ] u  d (23) 

which for convenience is also zero along the center line 
(Z = 0). The dimensionless excess pressure over that 
of the ambient gas at the same level is defined as 

/'C p_,og2b 4 \ ~ - - - /  ~p---/ -po+p~o.qx). (24) 

The two energy-specie functions,/31 and/32 are pro- 
portional throughout the gas phase since they are 
governed by the identical governing equation, equa- 
tions (10), and are proportional at the center line, fuel 
surface and entrance, equations (15), (20) and (11) re- 
spectively. This argument enables one to define a new 
normalized energy-specie function as 

/ 3 , (x ,  z )  /32(x,  z )  
F(X, Z) = B - /32(X, 1)" (25) 

Thus, F is unity at the fuel surface and zero for the 
pure oxidant at the entrance. Solving these equations 



Laminar burning between parallel fuel surfaces 

for equation (20), one obtains the surface relation, 

fl2(X, 1) = B-+-I 

Using the above defined variables, one can transform 
the energy-specie equation, equation (10) to its new 
form, 

1 
Z~,~k zFx- Z~¢ xFz - Pr Fzz = 0 (26) 

where p#/Pr = p2D = pk/Cp are assumed to be con- 
stant with the unit Lewis number and the numerical 
value of p/~ is calculated at the surface condition, p~#w. 

To transform the momentum equation, one needs 
to express the variable density in terms of the local 
enthalpy; thus, assuming constant specific heat for this 
term, with equation (5) one has: 

p ~ - p  T -  T~ h 
p T® CpT~ 

where C'p is chosen to provide the correct density ratio 
at the flame. Since there is no oxidant in the fuel rich 
zone and no fuel in the oxidant-rich zone, fll and r2 
can be used to express the above equation as 

poo-p L (~ YoooQ "~ 
= tTp T~ \ 1 + ~ ]  in the fuel-rich zone 

P / 
(27) 

L 
= - , r2 in the oxidant-rich zone. 

C,T~o 

These equations will now be expressed in terms of 
the normalized energy-specie function F defined above 
as well as the dimensionless parameters, 

CpT~ 
7 -= (28) 

L 

hvav 
z - (29) 

L 

_ Mvv'~ 
r - ro~ M--~'  (30) 

Physically ),, z and r are respectively the dimensionless 
ambient temperature, the dimensionless fuel surface 
temperature and the stoichiometric mass ratio of fuel 
to oxidant. At the flame, the infinitely fast reactions 
do not permit fuel and oxidant to coexist, so that at 
the flame r 2 -  fix = Yo~Q/Mov'oL; and using the above 
parameters and F, one has 

B + I  r 
F: at the flame. (31) 

B r + l  

Equation (27) can now be expressed as 

(p~--p)/p = G(F)/~/ (32) 
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where G(F) = T + B{1-F(X, Z)} 

when F >1 F: (i.e. fuel-rich zone) 

(. _B+ z B) G(F) = \ l ~ r  - F(X, Z) 

when F <. F: (i.e. oxidant-rich zone) 

with the above density functions being identical at the 
flame, i.e. F = F I .  

The governing momentum equation with its variable 
density term becomes 

zzz+ Zb~x~zz--*Zb@z~xz+ Z~@ 

- Z ~ - ~ + l ) n x + Z 3 G ( F ) = O .  (33) 

The dimensionless, half-separation distance, Zb, de- 
fined previously by equation (22) becomes 

1 

Finally, the boundary conditions developed in the 
previous section are: 

At the entrance, X = 0, 

F = 0 (34) 

t~z = Ui. (35) 

n = - U2./2. (36) 

At the center line, Z = 0, 

Fz= 0 

g'zz = 0 

~0=0.  

At the fuel surface, Z = 1, 

(37) 

(38) 

(39) 

And at the exit, X = H, 

= 0 (43) 

where the dimensionless inlet velocity and the height 
of the channel are defined as 

"in=-- Vw 
gb ~ \ L J \p~J u,, (44) 

9 ~ - / l ~ o ~ j  ~ .  (45) 

q/z = 0 (40) 

F = 1 (41) 

1 B 
~kx = ~ Pr Fz. (42) 
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S. THEORETICAL RESULTS 

Using the theory developed in the previous sections, 
three typical fuels, n-heptane, methanol and a-cellulose 
were calculated for a wide range of channel heights 
and separations. The parameters for these fuels used 
in the calculations are given in Table 1. 

J. S. KIM, J. DE RIS and F. WILLIAM KROESSER 

proaches a finite value (for methanol, 2.76 × 10 -'3) 
which for infinitely long channels corresponds to zero 
excess pressure gradient for downstream. Such be- 
havior at large heights is characteristic of liquid fuels 
which have relatively low vaporization temperatures 
and large mass transfer rates resulting in the friction 

Table 1. Dimensionless parameters for fuels 

Parameter Symbol n-Heptane Methanol a-Cellulose* 

Mass transfer driving force B 8.56 2.5 1.0 
Surface temperature ~ 0.26 0.04 0.16 
Ambient temperature 7 l' 15 0.338 0.16 
Stoichiometric mass ratio r 0'066 0" 155 0" 14 
Prandtl number Pr 0'74 0-74 0"74 

*Based on the experiments of Kosdon, Williams and Buman [5] and theoretical work of Kim, 
de Ris and Kroesser [6]. 

The governing parabolic equations are numerically 
solved with the Predictor-Corrector method [16] 
using backward differences in the X-direction. The 
initial velocity, Ui, is presumed to be known across 
the entrance and its corresponding channel height, H, 
is calculated by marching in the X-direction until the 
exit condition, n = 0 [equation (43)] is reached. The 
numerical solution was always continued until we were 
absolutely sure that no further solutions were possible; 
that is, the gases must be cooled to the wall temperature, 
Trap, of the fully saturated fuel vapor and the excess 
pressure must be diverging from n = 0. 

Figures 2 and 3 show the pressure changes for burn- 
ing methanol and a-cellulose inside the channel for 
different values of Uin. The normalized pressures start 
at minus unity at the entrance in accordance with the 
initial condition, equation (36). For methanol, there 
are three types of n vs X curves having zero, one or 
two values of H for which n = 0 corresponding re- 
spectively to zero, one or two solutions (i.e. heights, H). 
The methanol pressure curves intersecting n = 0 at 
large values of H indicate two points where the interior 
pressure in the channel equals the ambient pressure. 
Thus, the exit condition, n = 0, is necessary but not 
sufficient for an exit. The curves for very large values 
of Ui~ have a similar shape, but the greater initial 
pressure drop due to friction losses prevents the 
buoyancy from bringing these curves back to n = 0; 
this means that no physically realistic free convective 
solutions exist for such large values of Uin. 

In terms of channel height, or more precisely 
H ~ lib 4, the inlet velocity, U~,, increases with in- 
creasing channel height until U~, reaches a maximum 
(for methanol this is 4.084 × 10-3). With further in- 
creases in H, Ui~ decreases and asymptotically ap- 

loss overcoming buoyancy with an eventual decrease 
in pressure. 

Figure 3 on the other hand shows the excess pressure 
curves for a-cellulose, a solid-fuel. For actual burning 
of a-cellulose, the gaseous fuel is generated by pyrolysis 
- - a  non-equilibrium process with increasing char- 
deposition at the surface, preventing a truly steady 
state burning. Nevertheless it is worthwhile to in- 
vestigate the mean burning phenomena of the pseudo- 
ideal a-cellulose representing effective physical data as 
interpreted in [5]. Only one or no solution occurs 
for each Ui~ as shown, since the excess pressure never 
does come back down to ~ = 0 after once exceeding 
rt = 0. Within the channel, the excess pressure always 
remains less than zero. As H increase, Ui, increases 
and asymptotically approaches Ui. = 3.38 × 10-3 
which is the initial velocity for an infinitely long 
channel. Since ~t-cellulose has a small B number 
(implying a relatively low mass flux from the surface) 
and a high surface temperature, the problem is quite 
similar to the pure free convective heat transfer problem 
in a channel [11] which also shows only one zero for 
its pressure defect curve. 

Figure 4 shows the dimensionless burning rate with 
respect to the dimensionless reciprocal height for three 
fuels over their whole range of channel heights and 
separations. Defining n as the slope of the log-log 
curves, the total burning rate becomes proportional 
to 11 -nb4n- ~. For the shorter or more widely separated 
channels on the right hand side of the figure, the curves 
have a quarter power slope (i.e. n = 1/4) with respect 
to reciprocal height, i.e. b4/l. Thus, the total burning 
rate per unit channel length is proportional to 13/4b°; 
which is independent of the separation distance. Physi- 
cally, this means that, in this open regime, a relatively 
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FIG. 2. Dimensionless normalized excess pressure curves 
within the channels for methanol. 
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FIG. 3. Dimensionless normalized excess pressure curves within the channels for or-cellulose. 
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FIG. 4. Theoretical and experimental burning rates. Restricted regime on the left and open regime 
on the right. 

large amount  of oxidant is supplied and the burning 
becomes independent of the existence of the opposing 
surface. Thus, the solutions in this regime approach 
that of free convective burning of a single surface. 
Here, the burning rate asymptotically approaches our 
single-surface numerical solution [6] with a numerical 
discrepancy for methanol burning within 2 per cent. 
The asymptotic lines correspond to an analytical 
solution to be discussed in the next section. 

As the height increases (i.e. b4/l decreases) the supply 
of oxidant becomes restricted. If the channel is suffi- 
ciently high and narrow, the oxidant is entirely con- 
sumed near the entrance with the remaining height 
containing fuel-rich gases. In this restricted regime on 
the left hand side of Fig. 4, the slopes asymptotically 
approach unity (for the two liquid fuels from above 
and a-cellulose from below). In this regime the total 
burning rate per unit channel length is proportional 
to/°b3; therefore, it becomes independent of the height 
of the channel, l, since the oxidant is totally consumed, 
after which the gases are cooled to the surface tem- 
perature. 

Figures 5-7 show the stream lines, excess pressure 
changes, velocity, and temperature profiles for the 
burning of methanol in the open, intermediate and 
restricted regimes, respectively. All three channels are 

(C) 

~ S x t O  A 

o . % ,  , , i 
ylb 

I (d} 

2 " O ~ B  ; c 

~ 0 0  

y/b 

(b) (a) 

'ii I A,I 0 

of 
-30 -t'O O I 

]l"/(Uin%) y/t~ 

FIG. 5. Typical results in the open regime, methanol 
H = 0-3279 x 10 -5, Ub = 5 which implies l = 8.34cm b = 
1.67cm for the particular value of H, (a) stream lines and 
flame shape; (b) dimensionless normalized excess pressure: 

(c) velocity at each level; (d) temperature at each level. 
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FIG. 6. Typical results in the intermediate regime, methanol, 
H = 0.36736 x 10 -4, lib = 5 which implies l = 3.75cm, 
b = 0.75 cm for the particular value of H, (a) stream lines 
and flame shape; (b) dimensionless normalized excess 
pressure; (c) velocity at each level; (d) temperature at each 

level. 

A S!I ''° 

a- 

0'00 I0 0 200 t 
.v/t> rl (ui,~/,) y/t, 

FIG. 7. Typical results in the restricted regime, methanol, 
H = 0.2578 x 10 - t ,  lib = 5 which implies l --- 0.42cm, b --- 
0-084 cm for the particular value of H, (a) stream lines (flame 
shape is not shown because it occurs almost at the entrance); 
(b) dimensionless normalized excess pressure; (c) velocity at 

each level; (d) temperature at each level. 
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shown with a l/b ratio of 5. For  this particular aspect 
ratio, the boundary layer approximation could intro- 
duce significant errors near the entrance as suggested 
by Figs. 6 and 7. However, for larger aspect ratios 
this type of error would be negligible as discussed in 
the Appendix. 

The numerical error for these solutions is always 
maintained less than 3 per cent in terms of the resulting 
pressure distributions. This corresponds to a burning 
rate error of less than 1"5 per cent. 

6. ASYMPTOTIC SOLUTIONS FOR THE OPEN AND 
RESTRICTED REGIMES AND THEIR INTERPRETATION 

Approximate and exact analytical solutions are 
possible for open and very restricted regimes respec- 
tively, and these solutions are compared to the 
numerical results developed in the previous sections. 
Sometimes, these analytical solutions are more con- 
venient and can be used to estimate burning rates for 
various applications. 

For  the widely separated regime, the burning rate 
approaches the single surface burning solution; thus, 
the approximate solution of the study [6] can be used 
directly. The burning rate derived from a Pohlhausen 
approximation procedure involving assumed velocity 
and energy-species profiles was shown to be 

rh} \ 40 Pr ,] 

~(B+T)(I_F~I3)+z ~1!4 
× ( y ( B + l ) [ P r + ~ ( B + l ) ] J  (p~#x~o/x) '/4. (46) 

Integrating this equation, we obtain 

1 ~flril,~d x (BIn(I+B)~ 1/2 

J ' 6  (B + "c)(1 - Fy 3) + "r 71]4 
x 177 ( ~ - ~ l ) ] j  " 

\CpT~J t, pw l 

This approximate equation agrees to within 5 per cent 
of the exact burning rate in the open regime for all 
practical fuels. 

In the restricted regime, an exact asymptotic solution 
can be obtained by considering an infinitely long 
channel. In such a channel, the velocity and tem- 
perature profiles become fully developed except for the 
relatively negligible portion near the entrance. The 
velocity profile is 

u = u,.[1 -- (ylb)2]. (48) 

Here, u ,  is the maximum velocity which occurs at 
the center line y = 0. For  such long channels both the 
inertia terms and the excess pressure gradient term 
are zero over essentially the entire length. Thus, the 
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momentum equation, equation (2), reduces to 

Um 
g(P~ -Pw) -- 2/~,~, b~- = 0 (49) 

where Pw is the density of gas in the channel. 
Taking a mass and heat balance between entrance 

and exit, one has 

p~, u dy = ~p~u,~b = p~ui .b  + m~-dx (50) 
0 JO 

go~Q p~uinbCp(rvap- T~) 
poouinb Mo v~oo = 

t' + L ~il'~dx. (51) 
do 

Combining the above three equations with the defini- 
tions for B, T, 7, one obtains the final burning rate 
equation for the restricted regime as 

/~  l 3(B+ 1) r 

x \ C v T ~ / \ p w  j 1 / '  

which has unity slope in the log-log plot of Fig. 4. 
Next, the influence of the parameters on the total 

burning rate will be discussed. The burning rate is con- 
trolled by (1) the geometrical parameter, Gr(b/l) ~ b4/1, 

whose effects were explained in the previous section; 
(2) mass transfer driving force, B, (3) surface tem- 
perature, ~, (4) stoichiometric fuel oxidant mass ratio, r, 
(5) ambient temperature, 7 and (6) transport parameter 
Prandtl number, Pr. The Prandtl number is regarded 
as a constant and equal to that of air at ambient 
temperature. The effects of the parameters, B, ~ and r 
in the open regime were described in detail by the 
authors in a previous study on single surface burning 
[6], with the conclusion that the burning rate is con- 
trolled primarily by the B number for common fuels. 

The dimensionless ambient temperature parameter. 
7 = CpT~/L controls the thermal expansion of the gas 
with its consequent acceleration and flow blocking 
effects inside the channel. Thus, for small values of 7, 
the expansion is severe and the flow requires strong 
acceleration, thereby creating a blocking effect which 
discourages the influx of oxidant at the entrance and 
reduces the burning rate within the restricted regime 
associated with long and narrow channels. However, 
in the open regime the thermal expansion inside the 
channel is less important and the burning rate in this 
regime for the same H is independent of 7. The 
stoichiometric ratio, r, usually has only a minor effect 
on the burning rate in the open regime, and in the 
restricted regime the burning rate is totally independent 
OfF. 
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The asymptotic solutions, equations (47) and (52), 
are plotted in Fig. 4 and compared to the numerical 
results of the three fuels. 

7. EXPERIMENTS 

Methanol was saturated in two identical porous slabs 
and burned in the vertical channel between facing 
slabs in ambient air as shown in Fig. 8. All surfaces 
except the facing surfaces were sealed with aluminum 
foil. The weight loss versus time was measured during 
flaming combustion and the results were compared 
with the theory. 

A: Marinite insulation 

B: Water cooled metal can 

C: Load cell 

D: Bakelite connector 

E: Nichrome wire 

F: Porous surface of 
fuel bed 

G: Aluminium foil covered 
fuel bed 

H: Metal crib 

I: Glass wall 

C 

D 

FIG. 8. Experimental arrangement. 

The 10-cm and 24-cm high porous ceramic slabs 
(C-400 capillite formula made by Hamilton Porcelains 
Ltd) were used as fuel beds. Also, the effects of fuel 
bed porosity were checked by running tests with 10-cm 
high Marinite-23 (Johns Manville's somewhat less 
porous material) fuel beds with similar results. 

The slabs were fixed in a metallic crib, separated by 
a specific distance, and lateral entrainment was pre- 
vented by glass end-walls. The crib was then secured 
by bolts and soaked for at least 5 min in a methanol 
tank to achieve thorough saturation. The unit was 
hung on a load cell to measure the weight loss versus 
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time during flaming combustion. The load cell was 
protected by a water-cooled metal can with Marinite 
insulation so that the weight loss rate measurements 
were affected by no more than 1 per cent due to the 
fire below. The weight loss curves showed steady 
burning after a very short initial transient period. 

The results are shown in Fig. 4 with the theoretical 
calculations for methanol. In this data, the wall 
kinematic viscosity, vw, is calculated for the mixture 
of product gases and methanol vapor (mass fraction, 
0"694 [13]) at the surface temperature, 328°K. Ambient 
gas viscosity was also calculated for the same mixture 
gas using the relation, #~ = ,u~,(p~,/po~) at the ambient 
temperature, 293°K. 

The possible radiation heat loss was also tested by 
repeating the experiment with one of the slabs removed 
with results shown by the dash~lot  line in Fig. 4. The 
theory predicts the same results for the single surface 
and the widely separated channels; thus, this dis- 
crepancy of the two experimental results, which are 
10-15 per cent in burning rate, are interpreted as purely 
due to the radiation heat containment. 

The theoretical results agree favorably with the 
experimental data over the entire range. For  the open 
regime, the data clearly show a quarter-power relation 
with respect to b4/l. As the separation distance de- 
creases, or the height of the channel increases, the data 
show a moderate scatter which could be attributable 
to errors in measuring the very narrow gaps of the 
channel in this regime. 

8. CONCLUSIONS 

A given fuel shows three burning regimes depending 
on channel geometric arrangement, lib*. For shorter 
or more widely separated channels of small I/b*, the 
burning is less dependent on the existence of the 
opposing surface and the total burning rate is propor- 
tional to the three-quarter power of height of channel. 
If the channel is sufficiently high and narrow, the 
oxidant is entirely consumed near the entrance and 
the total burning rate is independent of the channel 
height but proportional to the cube of the separation. 
Between the open and restricted regimes, there exists 
an intermediate regime. 

The mass transfer driving force, B, is the dominant 
chemical parameter, whereas the dimensionless surface 
temperature, z, the stoichiometric fuel-oxidant mass 
ratio, r, and the dimensionless ambient temperature, 
7, usually have somewhat smaller effects. The dimen- 
sionless ambient temperature, y, controls the thermal 
expansion of gas inside the channel. 

These results of the non-radiative burning theory 
show reduced burning for two surfaces as compared 
to a single surface. We thus conclude that the so-called 

"chimney effect" associated with increased burning 
rates must be due to the entrapment of both flame 
and solid surface radiation or possible chemical kinetic 
effects. 

Finally, the experimental results agree with the 
theoretical calculations. In the open regime, the op- 
posing surface preserves the radiation heat; thus, the 
burning rate increases about 10-15 per cent more than 
single surface burning for methanol. 
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APPENDIX 

An exact solution describing the overall physics of this 
problem would require the solution of elliptic partial 
differential equations including the second order diffusion 
terms of momentum,  heat and species in the longitudinal 
direction. The mathematical  solution of such elliptic 
equations is quite complex and would require at least an 
order-of-magnitude more computing time to solve, as com- 
pared to the present parabolic boundary layer equations, 
equations (2), (3) and (4) which regard the longitudinal 
diffusion terms to be an order of magnitude smaller than 
the other terms. In this appendix, the possible error of  
the boundary layer approximation will be examined using 
the boundary layer results to estimate the magnitude of the 
longitudinal gradients and comparing them to the transverse 
gradients so as to establish a criteria for the validity of  
this boundary layer solution. 

The magnitude of the possible errors resulting from the 
neglect of the longitudinal diffusion terms can be represented 
by their ratio with the transverse diffusion terms, namely 

Longitudinal diffusion ~ c~dA2F/(Ax)21 ~ (A_)~)2 

Transverse diffusion ~IA2F/(A3,)2[ \ A x /  /V=const. 

where F is any property which is transferred both by 
convection and conduction and ~ is the generalized mol- 
ecular diffusivity of that particular property, Thus the 
possible error of the solution at a particular point can be 
expressed as a simple function of the slope of the equi- 
property lines at the point. The most convenient equi- 
property line is the flame where the specie concentrations 
and temperature are constant  throughout.  The above 
equation is now converted into its dimensionless form using 

the longitudinal dimensionless distance, X defined by 
equation (21) and the normalized transverse distance, E 

Longitudina_l diffus!on I - H2 (b~2(A y ~2 
Transverse diffusion [flame , l /  \•X/flam c 

where Y = y/b. 

The above equation shows that the error is inversely 
proportional to the square of the geometrical slope of the 
flame. The flame typically has an S-shape profile with local 
maxima of A y / A X  at two points, one at the entrance and 
the other at the point where the flame intersects the center 
line. The point where the flame intersects the center line is 
obviously not important  since, even though the transverse 
diffusion is zero, the flow is dominated by a strong 
longitudinal convection with relatively small vertical gradi- 
ents in F or ~,. But at the entrance, the longitudinal 
gradients are dominant  and the error for the boundary 
layer solution at this region could be large. 

For the set of channels having a given value of H, the 
slope, AY/AX,  at the flame decreases sharply as the level, X, 
increases, thus reducing the error for larger values of X. 
Fixing both H and X, that means at a fixed fraction of 
the total height of channels having the same H, the only 
remaining factor which controls the error is the aspect ratio, 
lib. Thus, increasing the aspect ratio, one can maintain the 
possible error at a given dimensionless elevation, X, to be 
less than any desired value. 

Here a min imum acceptable aspect ratio, l/b, is calculated 
by first finding the fractional height, X/H, up to the point 
where 10 per cent of the total mass transfer at the surface 
has occurred and then adjusting lib such that the lopgitudinal 
diffusion is l0 per cent (or 100 per cent) of the transverse 

2 
b 

|O~L - . . . . . . . .  i . . . . . . . .  r . . . . .  ~ - - - '  r , , ~ . [  . . . . . . .  ! 
Dotted lines calculated.from single 

j J r  i 
I 10. 6 i0 .  B 10. 4 i0 .  s iO t  lO.q 

g L Poo b ~ 

FIG. 9. Error criteria for burning methanol. Ratio: the max imum ratio 
of vertical diffusion to horizontal diffusion over the channel length for 
which 90 per cent of the total mass transfer occurs. Thus Valid zone: 
more than 90 per cent of total mass transfer takes place where vertical 
diffusion is less than 10 per cent of horizontal diffusion. Intermediate 
zone: more than 90 per cent of total mass transfer takes place wiaere 
vertical diffusion is less than 100 per cent but more than 10 per cent 
of horizontal diffusion. Invalid zone: less than 90 per cent of total mass 
transfer takes place where vertical diffusion is more than 100 per cent 
of horizontal diffusion. The points indicate the errors for the specific 

flows shown in Figs. 5-7, respectively. 
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diffusion at the point. In this way one insures that 90 per 
cent of the total mass transfer occurs in a region for which 
the longitudinal diffusion is less than 10 per cent (or 100 
per cent) of the transverse diffusion. Figure 9 shows these 
minimum aspect ratios against the dimensionless channel 
height, H, for the burning methanol. 

The curves of 10 and 100 per cent ratios divide the entire 
zone into three parts. The lowest part is the zone where the 
longitudinal diffusion is larger than the transverse diffusion 
at the 10 per cent vaporization point; therefore, the 
boundary layer approximation fails to give a correct solution 
below this aspect ratio. However, in the uppermost zone, 
the longitudinal diffusion is always less than 10 per cent of 
the transverse diffusion at the point of 10 per cent vaporiza- 
tion; thus, the error on the total burning rate is much less 
than 10 per cent, perhaps closer to 1 per cent. In between, 

the longitudinal diffusion is between 10 and 100 per cent of 
transverse diffusion at the 10 per cent mass transfer point; 
thus, the solution is approximately correct. It has to be 
emphasized that the criteria are calculated at the point of 
10 per cent vaporization; thus, at higher elevations the error 
is less than the prescribed one. 

It is interesting to .compare these results to the error of 
the single vertical surface burning theory [6]. In this theory, 
the flame distance from the fuel surface is proportional to 
a quarter power of the vertical distance. The identical error 
criteria can be expressed by lines of quarter power slope 
which are also shown in Fig. 9 by dotted lines. As the 
dimensionless channel height, H, decreases (left side of 
Fig. 9), the channel lies in the open regime and the errors 
of the present theory asymptotically approach that of the 
single surface burning theory. 

COMBUSTION LAMINAIRE ENTRE DEUX SURFACES COMBUSTIBLES 

R6sum6--On a 6tudi6 th6oriquement et exp6rimentalement des facteurs influenqant la vitesse de com- 
bustion entre deux plaques combustibles verticales et en regard. On suppose: l'absence de rayonnement, 
des vitesses de r6action de la phase gazeuse infinies et un nombre de Lewis 6gal ~t l'unit6. 

La r6solution num6rique des 6quations a montr6 que le flux de combustion est contr616 par le produit 
du nombre de Grashof, par le rapport de forme du canal (la demi-largeur du canal divis6e par la 
longueur). Pour une grande largeur de canal, le flux de combustion est ind6pendant de cette distance 
et les r6sultats se ram~nent/~ la solution pour une combustion sur surface unique. 

Pour des canaux tr6s 6troits, le flux de combustion devient ind6pendant de la longueur du canal et 
il approche asymptotiquement une solution analytique obtenue pour des canaux infiniment longs. 

Enfin, les r6sultats th6oriques sont compar6s aux r6sultats de l'exp6rience et il en r6sulte un accord 
favorable. 

LAMINARE VERBRENNUNG ZWISCHEN ZWEI BRENNSTOFF-OBERFL~CHEN 

Z u s a m m e n f a s s u n g - - D i e  Einflul3faktoren fiir die Verbrennung zwischen zwei vertikalen, parallelen 
Brennstoffoberfl~ichen wurden theoretisch und experimentell untersucht. Angenommen wurde dabei: 
keine Strahlung, unendliche Reaktionsgeschwindigkeit in der Gasphase und eine Lewis-Zahl = 1. 

Die Gleichungen werden numerisch geliSst; es wurde gefunden, dal~ die Verbrennung dutch das 
Produkt aus Grashof-Zahl und Kanal-Anordnungsverh~iltnis (d.h. halbe Breite des Kanals geteilt dutch 
seine L/inge) bestimmt wird. Bei grol~em Oberfl~ichenabstand ist die Verbrennung unabh~ingig yon der 
Kanalweite und die Ergebnisse reduzieren sich auf unsere LiSsungen fiir die Verbrennung an einer 
einzelnen Oberfl~iche. Fiir sehr lunge, enge Kan~ile wird die Verbrennung unabh~ingig yon der Kanall~inge 
und n~ihert sich asymptotisch der analytischen Ltisung f'tir unendlich lunge Kan~ile. 

Die theoretischen Ergebnisse zeigen gute (]bereinstimmung mit den experimentellen Daten. 

YIAMHHAPHOE FOPEHHE ME)K~Y ~BYM~I TOH.I'IHBHblMH FIOBEPXHOCT$IMH 

AHHOTalIHIg - -  TeOI~THqeCKH H 3KcrlepnMeHTaJlbHO HCC.IIC~OBaJIHCb ~aKTopbl,  a.qHglOIl~He Ha HHTeH- 
CHBHOCTb FOpeHHg Me)K2]y ~tByMN BepTHKaYlbHblMH rlapaJl~le~bHblMH TorUIHBHbIMH rlOBepXHOCT~IMit, 
pacrloYlOXeHHblMH 21pyF rlpOTHB apyra. I-IpHHHMa31OCb, qTO qHC.rIo .J-lbloHCa paBHO eRHHtIH¢, H3Jly~e- 
HHe OTCyTCTByeT H CKOpOCTb peBKHHH B ra3OBO~ ~ba3e 6ecKoHeqHa. 

YpaBHeHHg pema~Hcb ~HC~eHHO. Hair,erie, ~[TO HHTeHCHBHOCTb FOpeHH~I onpeReJiMeTc~l n p o -  
H3Be~eHHeM ~HCYIa I-pacro~ba Ha OTHOmeHHe nlHpHHbl Kanaka r e r e  RJIHHe (T. e. I~IOY[OBHHa IRHpHHbI 
Kanaka, ~eaeHHaa Ha ere ~31HHy). ~ 1  KaHa.rlK c ~O2IblIIHM IIOIIepe~IHblM ce~IeHHeM HHTeHGHBHOCTb 
FOpeHH~ He 3aBHCHT OT IlIHpHHbl Kanaka ,  a pc3yJlbTaTbl CBO~flTCH K IIOJlyqeHHOMy HaMH paHee 
peKleHHtO ~Ylfl ropeHH~l Ha O~HOi~ rIonepxHOCTH. B cylytlae O~IeHb ~JIHHHblX y3KHX KaHanOB HHTeHCHB- 
HOGTb FOI~HHH He 3aBHCHT OT ~[~HHbl KaHaJia H aCHMUTOTH~IecKH rlpH6JIH~aeTCH K aHaHHTH~IeCKOMy 
pemeHH~O ~ a a  6eCKOHe~IHO /~HHHblX KaHa~oa. 14 HaKOHeH, l~poBe]~eRo cpaBHe~tHe TOO~TH~IeCKHX 

pe3ynbTaTOa C 3KcrlepHMeHTa~IbHbIMH, H rlo~yqeHo x o p o w e e  COOTBeTCTBHe. 


